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Stress and fracture analysis of bonded double lap joint (DLJ) specimens have been
investigated in this paper. Numerical and analytical methods have been used to
obtain shear- and peel-stress distributions in the DLJ. The generalized analytical
solution for the peel stress was calculated for various forms of the DLJ geometry
and, by using crack closure integral (CCI) and by means of the J-integral
approach, the analytical strain energy-release rate, G, was calculated. Experi-
mental fracture tests have also been conducted to validate the results. The speci-
mens were made of steel substrates bonded by an adhesive and loaded under
tension. Specimens with cracks on both sides and at either end of the DLJ interface
were tested to compare the fracture behavior for the two crack positions where ten-
sile and compressive peel stresses exist. Tests confirmed that the substrates essen-
tially behave elastically. Therefore, a linear elastic solution for the bonded region
of the DLJ was developed. The fracture energy parameter, G, calculated from the
elastic experimental compliance for different crack lengths, was compared with
numerical and analytical calculations using the experimental fracture loads.
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The stresses from analytical analysis were also compared with those from the finite
element results. The strain energy-release rate for fracture, Gf, for the adhesive has
been shown to have no R-curve resistance, was relatively independent of crack
length, and compared well with those obtained from numerical and analytical
solutions. However, it was found that fracture energy for the crack starter in the
position where the peel stress was tensile was about 20% lower than where the
crack was positioned at the side, where the peel stress was found to be compressive.

Keywords: Fracture toughness; Compliance method; Double lap joint; Adhesive

INTRODUCTION

Adhesive joints are widely used as the principal alternative to conven-
tional mechanical fasteners such as screws, rivets, and bolts in industry
as well as for insulating applications. The basic reasons for this special
attention to adhesive joints can be seen in some key points, such as uni-
form load transfer, removal of any discontinuities in the geometry, and
reduction of theweight of the structure. These design process require that
the stress field in the bonded region both in an uncracked and a cracked
condition be precisely estimated. In addition, it should be able to predict
by the aid of a failure criterion or a fracture mechanics criterion, the
strength and durability of bonded joint under static or cyclic loading.

The objective of the present article is to derive a simplified analyti-
cal solution for a generic DLJ geometry and validate it with numerical
and experimental work. Hence, a short review of related previous
work is presented here. There are a number of analytical solutions
for stress distribution in the lap joint geometry. Different assumptions
and simplifications have been made to reach these solutions.
Volkersen [1] made the first attempt to show the elastic behavior of
the adhesive layer of DLJs, which were subjected to a tensile loading.
Goland and Reissner [2] considered cemented single lap joints. Hart-
Smith [3] developed a more practical modeling for DLJs. He derived
an explicit analytical solution for the static load-carrying capacity of
double lap adhesively bonded joints and extended the elastic solution
of Volkersen, which accounted for only imbalance stiffness. Hart-
Smith derived both shear- and peel-stress distributions while he made
some simplifications for uncoupling shear and peel stresses. He also
derived the solutions for single lap joints [4] and stepped lap joints
[5]. Williams [6] produced a general method for the calculation of
energy-release rates for cracked laminates. Kinloch [7] presented a
shear-lag model that took into account the shear deformation of the
adhesive layer. Hamoush and Ahmad [8] developed a criterion for
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estimating the interface-separation load for adhesive joints of two dis-
similar materials using a fracture mechanics approach. Bigwood and
Crocombe [9] developed an elastic analysis for adhesively bonded sin-
gle lap joints. Fernlund and Spelt [10] presented an analytical method
for calculating adhesive-joint fracture parameters using the J-integral
method. Edde and Verreman [11] derived an analytical solution of shear
and peel stresses for the case of clamped and similar adherends using a
beam theory as suggested by Goland and Reissner. Chiu and Jones [12]
presented a numerical study of a thick adherend lap joint and a sym-
metrical DLJ, in which they discussed the effect of varying adherend
and adhesive thicknesses on the stress distribution in the thin adhesive
layer. Williams [13] determined the energy-release rates for uniform
strips in tension and bending. Hadavinia et al. [14] used CCI and J-inte-
gral methods to calculate the strain energy-release rate in bonded single
lap joints. Lee [15] studied nonlinear behavior of tapered bonded joints
and concluded that tapered joints are efficient because of the reduction
in peel stress at the adherend tips. Her [16] presented an analytical sol-
ution for stress analysis of adhesively bonded lap joints using a simplified
one-dimensional model based on classical elasticity theory. Pereira and
Morais [17] conducted an experimental study on the strength of
adhesively bonded stainless steel joints, prepared with epoxy and acrylic
adhesives, and measured Mode I critical strain energy-release rate.

MODELING OF DOUBLE LAP JOINT

In this article, the focus is on the double lap joint (DLJ) as a special
case. However, the presented method can easily be extended to the
analysis of a single lap joint. The DLJs were made from an epoxy
adhesive used to bond the steel substrates. A schematic of a double
lap joint specimen is shown in Figure 1. The outer adherends have

FIGURE 1 The schematic drawing of a double lap joint (DLJ) geometry and
its loading.
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a Young’s modulus E1, shear modulus G1, Poisson’s ratio n1, and
thickness t1, whereas E2, G2, n2, and t2 are Young’s modulus, shear
modulus, Poisson’s ratio, and thickness of inner adherend, respect-
ively. The joint overlap length is L and width is w, whereas Ea, Ga,
na, and ta are Young’s modulus, shear modulus, Poisson’s ratio, and
thickness of the adhesive layer, respectively. The double lap joint
can be loaded in tension (compression), F x, and shear, Qx, as well as
moment, Mx, at the substrates’ ends, where the superscript x refers
to all external loads applied in a plane normal to x-axis (see Figure 1).

ANALYTICAL SOLUTION

The classical theory of plates is employed to develop the differential
equations that describe the shear and peel stresses along the bondline.
The procedure is general and can be easily used in different situations.
Figure 2 shows a free-body diagram of an element of a DLJ in the bonded
region. The substrates are considered to behave as linear elastic cylindri-
cally bent plates. It was assumed that the plate behaves in plane stress
condition in the x–z plane and in plane strain condition in the x–y plane.
In this section, the general and simplified solutions of shear- and peel-
stress distribution along the bondline is discussed using the equilibrium
equations of the inner and the outer adherends presented in Appendix A.

FIGURE 2 Free-body diagram of a double lap joint element showing the
detail in the bonded region.
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General Solution

The shear strain in the adhesive can be taken as relative displace-
ments of the upper (u1) and lower layers (u2) in the x direction, which
are in contact with the substrates. Thus, assuming elastic behavior,
the shear stress can be written as

sxy ¼
Ga

ta
ðu2 � u1Þ ð1Þ

where u is the displacement in the x direction. As presented in Figure 2
and under the assumptions made for the state of stress and strain, the
component of strains resulting from longitudinal and moment loading
for the two adherends can be superimposed to obtain the relations

du1

dx
¼ n1 F1 þ

6M1

t1

� �
;

du2

dx
¼ n2 F2 �

6M2

t2

� �
ð2Þ

in which subscripts 1 and 2 stand for the outer and the inner adher-
ends, respectively, and

ni ¼
1� n2i
Eiti

; i ¼ 1; 2:

Differentiating Equation (1) and substituting from Equation (2) lead to
the following equation:

dsxy
dx

¼ Gan2

ta
F2 � /F1ð Þ � 6

t2
M2 þ

/t2
t1

M1

� �� �
; / ¼ n1

n2
: ð3Þ

Two further differentiations from Equation (3) and substitutions of
appropriate equations from Appendix A for moment and longitudinal
and transverse forces yield

d2sxy
dx2

¼ Gan2

ta
2þ 4/ð Þsxy �

6

t2
Q2 þ

/t2
t1

Q1

� �� �
ð4Þ

d3sxy
dx3

�Gan2

ta
2þ 4/ð Þdsxy

dx
þ 6/

t1
ry

� �
¼ 0: ð5Þ

Equation (5) is a differential equation in which shear stress, sxy, and
peel stress, ry, are coupled. The shear- and peel-stress distributions
can be found by deriving another differential equation, and then the
shear stress can be uncoupled from the peel stress.
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Hooke’s law for the case of plane stress linear elastic cylindrically
bent plates is used to evaluate the relation between the bending
moment intensity (per unit width) and deformation in the y direction
[18] as

d2vi
dx2

¼ �Mi

Di
; Di ¼

Eit
3
i

12ð1� n2i Þ
; i ¼ 1; 2: ð6Þ

in which Di is the bending rigidity of the substrates.
The elastic peel stress shown in Figure 2 is defined as

ry ¼ �Ea

ta
ðv2 � v1Þ: ð7Þ

By taking the second to the fourth derivatives of Equation (7) and,
after substitution of equilibrium relations from Appendix A, the
following differential equations are obtained:

d2ry
dx2

¼ Ea

taD2
M2 � fM1ð Þ; f ¼ D2

D1
; ð8Þ

d3ry
dx3

¼ Ea

taD2
Q2 � fQ1 þ

ft1
2

sxy

� �
; ð9Þ

and

d4ry
dx4

� Ea

taD1
ry þ

t1
2

dsxy
dx

� �
¼ 0: ð10Þ

It can be seen that, in the fourth-order differential equation, the nor-
mal and the shear stresses are again coupled; therefore, stress distri-
butions cannot be found directly. The stress field can be found by
solving Equations (5) and (10) simultaneously to separate the vari-
ables. After some manipulations and rearrangements, the following
two uncoupled seventh- and sixth-order differential equations in
terms of a nondimensional parameter, n ¼ x=L, are derived:

d7sxy
dn7

� k2s
d5sxy
dn5

� 4k4r
d3sxy
dn3

þ 4k2sk
4
r 1� 3/

2þ 4/

� �
dsxy
dn

¼ 0; ð11Þ

d6ry
dn6

� k2s
d4ry
dn4

� 4k4r
d2ry
dn2

þ 4k2sk
4
r 1� 3/

2þ 4/

� �
ry ¼ 0; ð12Þ
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where

k2s ¼ ð2þ 4/ÞGan2L
2

ta
; k4r ¼

EaL
4

4taD1
: ð13Þ

The solution to Equations (11) and (12) is of the form Aern. These dif-
ferential equations can be solved in the same way because the auxili-
ary equation is identical in both cases. The general form of shear and
peel stresses is provided according to the auxiliary Equation (14)
under the condition that two roots of it are real (r1,r2) and the third
root is imaginary (r3):

R3 � k2sR
2 � 4k4rRþ 4k2sk

4
r 1� 3/

2þ 4/

� �
¼ 0; R ¼ r2: ð14Þ

Of course, there is a zero root for the shear differential equation. The
general form of stress distributions are

sxy ¼ a1 sinhðr1nÞ þ a2 coshðr1nÞ þ a3 sinhðr2nÞ þ a4 coshðr2nÞ
þ a5 sinðr3nÞ þ a6 cosðr3nÞ þ a7 ð15Þ

and

ry ¼ b1 sinhðr1nÞ þ b2 coshðr1nÞ þ b3 sinhðr2nÞ þ b4 coshðr2nÞ
þ b5 sinðr3nÞ þ b6 cosðr3nÞ: ð16Þ

Boundary conditions were applied to determine the constants of these
equations. These were carried out using MATLAB1 software [19] and
by solving the expanded equations numerically or symbolically.

The following boundary conditions were applied for the shear-stress
equation:

. Evaluating Equation (3) at both ends of the overlap joint (n ¼ 0 and
n ¼ 1).

. Making the derivative of Equation (5) two more times and substitut-
ing for peel-stress differentiation from Equation (8), then evaluating
it at the overlap ends.

. Making the derivative of Equation (5) three more times and substi-
tuting for peel-stress differentiation from Equation (9), then evalu-
ating it at the overlap ends.
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. Integrating the second equation in (A2) along the overlap length,
which is equal to the net of longitudinal applied force,

Z 1

0

sxydn ¼ 1

2L
F2jn¼1 � F2jn¼0

� �
¼ c: ð17Þ

A similar procedure applied to the peel-stress equation by using
Equations (3) and (8)–(10).

Simplified Solution

The general solution of the stress field was explained in the previous
section. In this section, an alternative, simpler approximate solution
for the peel- and shear-stress distribution, which are easier to
implement, is discussed. Then, the deviation of this approximate
solution relative to the general solution is investigated.

If we assume that the effects of transverse deflection on the shear
distribution is negligible, then the peel stress in Equation (5) can be
ignored and Equation (5) simplifies to

d3sxy
dn3

� k2s
dsxy
dn

¼ 0 ð18Þ

where ks is the same as defined in Equation (13).
The solution of this equation is

sxy ¼ a1 sinhðksnÞ þ a2 coshðksnÞ þ a3: ð19Þ

The following two boundary conditions at either ends of the adhesive
layer and Equation (17) were applied to find the constants a1–a3.

dsxy
dn

����
n¼0;1

¼ Gan2L

ta
F2 � /F1ð Þ � 6

t2
M2 þ

/t2
t1

M1

� �� �
n¼0;1

¼ a0
a1

�
: ð20Þ

These constants for dissimilar adherends are as follows:

a1 ¼ a0
ks

; a2 ¼ a1 � a0 coshðksÞ
ks sinhðksÞ

; a3 ¼ cþ a0 � a1
k2s

: ð21Þ

A simplified solution for the peel-stress distribution was also found by
assuming that the shear stress is constant along the overlap length.
Then, Equation (10) would be only in terms of the peel stress and
the coupling effect is discarded. In fact, from finite element analysis
it was found that the shear-stress distribution is nearly uniform and
constant along the overlap length away from the overlap ends. Hence,
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this is a reasonable assumption. The differential equation governing
the peel stress becomes

d4ry
dn4

� 4k4rry ¼ 0 ð22Þ

where kr is the same as defined in Equation (13). Equation (22) has the
following solution:

ry ¼ b1 sinðkrnÞ sinhðkrnÞ þ b2 cosðkrnÞ coshðkrnÞ
þ b3 sinðkrnÞ coshðkrnÞ þ b4 cosðkrnÞ sinhðkrnÞ: ð23Þ

Evaluating Equations (8) and (9) at either ends of the overlap produces
four equations to find the constants b1–b4. These equations were
solved simultaneously by the symbolic toolbox of MATLAB and the
results are presented in Appendix B.

CRACK CLOSURE INTEGRAL (CCI)

The stress field is now known according to the equations derived in the
previous section. The fracture mechanics parameters can be easily
estimated if the energy-release rate, G, can be expressed in terms of
stress values at the crack tip. Consider the strain energy-release rate
(SERR) when a crack grows an amount Da; that is, the crack advances
from state (a) to state (b) as shown in Figure 3. In this situation, the

FIGURE 3 Schematic view of crack growth from state (a) at crack increment
a to state (b) with crack increment aþDa.
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shear and peel stresses relax from some value to zero over the crack
advance increment Da, while the crack tip moves from A to A0 by Du
and Dv in the x and y directions, respectively. The former change in
displacement is caused by the normal stress component, which contri-
butes to Mode I fracture, whereas the latter one is due to the shear-
stress component and contributes to Mode II fracture. Alternatively,
the result would be the same if we consider the work required to close
the crack an amount Da. The energy-release rate per unit thickness
over this crack growth can be written as

GDa ¼ 1

2

Z Da

0

sxyDuþ ryDv
	 


dx1: ð24Þ

The SERR can be computed from Equation (24) by dividing both sides
by Da and letting Da ! 0 (note that stresses are maximum at either
ends of overlap according to the derived equations). The variation in
displacement is the relative displacement of the two adherends (see
Figure 3); therefore, Equation (24) can be rearranged as

G ¼ 0:5ŝs ðu2 � u1Þ þ 0:5r̂r ðv2 � v1Þ ð25Þ

where ŝs and r̂r are shear and peel stresses at the crack tip. Substituting
for displacements from Equations (1) and (7) yields

GI ¼
ta
2Ea

r̂r2; GII ¼
ta
2Ga

ŝs2; ð26Þ

and the total strain energy-release rate is G ¼ GI þGII.
For linear elastic materials, a simplified relationship between the

energy-release rate, G, and stress-intensity factor, K, can be presented
as

G ¼ ð1� n2aÞ
Ea

K2
I þ K2

II

	 

: ð27Þ

For the DLJ specimens, it was determined that the failure mechanism
was mixed mode. For the present, therefore, no attempt is made to dif-
ferentiate between the two modes but rather to determine the total
fracture energy-release rate, G, to compare it with the experimental
values.

J-INTEGRAL METHOD

In this section, the J-integral approach is implemented to calculate
fracture parameters and, unlike the CCI method, it can be applied
to nonlinear elastic behavior. This integral can be written for the
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problem under consideration as

J ¼
I
C

WðeÞn1 � rijnj
@Ui

@x

� �
ds ð28Þ

where C is a closed contour that encloses the crack tip and part of the
adhesive layer over the bonded lap, W is the strain energy per unit
volume, nj is the direction cosine of the outward unit normal vector
to C, and U(u,v) is the displacement vector along the contour. This
equation can be expanded as

J ¼
I
C

Z e

0

rijdeij

� �
n1 � rxn1 þ sxyn2

	 
 @u
@x

� sxyn1 þ ryn2

	 
 @v
@x

� �
ds:

ð29Þ

Figure 4 shows the contour along which the line integral was calcu-
lated. By definition, there is no traction on the crack faces and also
n1 ¼ 0 along contour parts 2 and 3; thus, the line integral is zero on
these parts. Along divisions 1, 4, and 6, n2 ¼ 0 and only nonzero stress
components contribute to the strain energy density. For contour parts
5 and 7, n1 ¼ 0. Therefore, the nonzero components of the J integral
would be

J1;4 ¼
Z ta=2

�ta=2

Z ey

0

rydey
	 


x¼0

� �
dy on C1;4; ð30Þ

J5 ¼
Z aþDa

0

sxy
@u

@x
þ ry

@v

@x

� �
dx on C5; ð31Þ

J6 ¼
Z ta=2

�ta=2

Z e

0

rydey þ 2sxydexy
	 


x¼aþDa

� �
dy on C6; ð32Þ

FIGURE 4 Description of the J-integral contour around the crack in the
adhesive layer region.
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and

J7 ¼ �
Z aþDa

0

sxy
@u

@x
þ ry

@v

@x

� �
dx on C7: ð33Þ

Equations (30) and (32) should be integrated over the adhesive thick-
ness. Because the adhesive layer is thin, it is reasonable to assume
that the variation in stresses in the normal direction across the
adhesive layer is negligible. Hence, the J integral on divisions 1, 4,
and 6 can be ignored. Therefore, the J integral results from adding
Equations (31) and (33), noting that displacements on division 7 are
due to adherend 1 and displacements along division 5 belong to adher-
end 2:

J ¼
Z aþDa

0

sxy
@u2

@x
� @u1

@x

� �
þ ry

@v2
@x

� @v1
@x

� �� �
dx: ð34Þ

Differentiating Equations (1) and (7) and then substituting for
displacement differences leads to

J ¼
Z aþDa

0

ta
Ga

sxy
dsxy
dx

þ ta
Ea

ry
dry
dx

� �
dx: ð35Þ

Noting that when the crack grows, stresses are relaxed, and because
the adhesive layer is thin, the stress field at the region between
x ¼ 0 and x ¼ a is negligible. Thus, the lower bound of the integral
can be replaced by a. Now, if Da ! 0, the shear and peel stresses have
values at the crack tip of ŝs and r̂r, respectively, and then

J ¼ ta
2Ga

ŝs2 þ ta
2Ea

r̂r2: ð36Þ

The J-integral approach resulted in the same relationship as was
achieved from the CCI in Equation (26).

NUMERICAL SOLUTION

The finite element (FE) model of the DLJ was considered as consisting
of two isotropic, homogeneous and linear–elastic materials joined
together along interfaces, as shown in Figure 1. Because of symmetry,
only one half of the DLJ was modeled under a plane strain assump-
tion. It should be noted that the analytical model described cannot dis-
tinguish between crack growth cohesively through the center of the
adhesive layer and crack growth at the adhesive=substrate interfaces.
However, the FE approach can obviously model either a cohesive or an
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interfacial crack. The analysis was undertaken using ABAQUS soft-
ware [20].

The J-integral method was used to calculate values of G as a func-
tion of the crack length, a. Smelser and Gurtin [21] have shown that
the J integral for a nonhomogeneous solid composed of dissimilar
materials is the same as the analogous result for a single-phase
material. Thus, for an interfacial crack problem, the line integral
has the same form as the well-known J-integral for monolithic solids,
provided the surfaces are free from traction and the interface is a
straight line.

For a quasi-static crack advance, two methods are typically used for
calculating the J integral in a two-dimensional analysis. One method
is based on a line-integral expression and the other method uses the
divergence theorem, where the contour integral can be expanded into
an area integral over a finite domain that surrounds the crack tip. In
FEA, coordinates and displacements refer to nodal points and stresses
and strain refers to the Gaussian integration point. Hence, it is more
convenient to evaluate the contour integral using the domain integral
and this method is used in ABAQUS. The number of different evalua-
tions of J possible is the number of such rings of elements.

For small scale and contained yielding, a path-independent integral
can be computed outside the plastic zone. This means that the J con-
tour has to be large enough to surround the plastic zone and pass
through the elastic region only. However, in a blunting crack case, sig-
nificant stress redistribution occurs at the crack tip and the path
dependence increases strongly. Also, as the stress singularity at the
blunting crack tip vanishes under the assumption of finite strains
and incremental plasticity, J will not have a finite value any more.
This is because the work dissipated by plastic deformation should
always be positive and the calculated J values have to increase mono-
tically with the size of the domain, except for the contour that touches
the domain boundaries. For these cases, the highest calculated J value
with increasing domain size in the far-field remote from the crack tip
is always the closest to the real far-field J. Accurate estimates of the
contour integral are usually determined even with quite coarse
meshes.

In the elastic analysis, the cracks were assumed to be sharp, and
the crack faces were assumed to lie on top of one another in the unde-
formed configuration. These types of cracks are normally analyzed
under small-strain assumptions, as the strain field is singular at the
crack tip and this singular zone is localized. The variations in the esti-
mates of the J integral from domain rings, excluding the crack tip
itself, were very small. The present FE modeling was performed
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assuming linear–elastic behavior. Material properties used in the FEA
are summarized in Table 1. In the present work, four-noded isopara-
metric elements were used for the whole domain. A typical model
of the joint was composed of 10,000 elements and 10,431 nodes (see
Figure 5). A range of crack lengths were used in the model and the
crack was positioned at the point A or D of the geometry as shown
in Figures 1 and 5. The results for the stress analysis are presented
in a later section. Also, the displacements measured between positions
A and D in Figure 5 are used to derive the compliance for different
crack lengths to compare with the experimental values measured at
the same positions as described in the next section.

EXPERIMENTS

The substrates used throughout the present article were prepared
from a 316 stainless steel and were bonded by using a hot-curing

TABLE 1 Properties of Double Lap Joint Specimens

Adherend 1–steel Adherend 2–steel Adhesive

Young’s modulus, E (GPa) 207 207 4
Poisson’s ratio, n 0.3 0.3 0.38
Thickness, t (mm) 6 12 1
Yield stress (MPa) 350 350 35

FIGURE 5 Finite element mesh for the half section of the double lap joint
(DLJ) specimen.
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toughened-epoxy adhesive ESP110 (Permabond Eastleigh, UK). Prior
to bonding, the steel substrates were pretreated using a grit-blast and
degrease (GBD) treatment. For these joints, the substrates were first
washed with water to remove any gross contamination, after which
they were degreased with acetone. The substrates were lightly grit-
blasted with alumina grit and any grit was removed with compressed
air. They were then cleaned with acetone, washed in cold tap water,
and dried prior to being bonded.

The double lap joint specimens (shown schematically in Figure 1)
were made from two outer 6-mm stainless steel plates and an inner
12-mm stainless steel plate with the width of w ¼ 20mm. After the
steel plates were pretreated, they were bonded with an overlap length
of L ¼ 20mm. The bonded plates were held together using clips while
they were cured for 60min at 180�C. The specimens were then allowed
to cool in the oven, during which procedure naturally occurring spew
fillets of adhesive formed at the ends of the overlap. Different sizes
of precracks were inserted at point A and point D and the symmetrical
location is shown in Figure 1 of both bondlines where a thin sheet of
PTFE had been inserted prior to curing.

The specimens were tested under monotonic tensile-loading con-
ditions. The joints were loaded using a constant displacement rate of
1mm=min in a ‘‘dry’’ environment at room temperature and failed
under tensile applied loads, P, to different failure loads of Pf. The fail-
ure loads of the double lap joint with different precrack lengths for
position A and D are summarized in Table 2. The displacement was
measured both with an extensometer placed between positions

TABLE 2 Failure Load and Fracture Energy of DLJ Specimen Derived from
Experimental, Analytical, and Numerical Calculations for Different Crack
Length

Crack at position D Crack at position A

Experiments Analytical FEA Experiments Analytical FEA

Crack

length (mm)

Failure load,

Pf (kN)

Gf

(J=m2)

Gf

(J=m2)

Gf

(J=m2)

Failure load,

Pf (kN)

Gf

(J=m2)

Gf

(J=m2)

Gf

(J=m2)

0 33.9 — — — 36.5 — — —

2 28.2 662 823 750 34.2 600 983 870

4 24.6 688 944 732 32 841 1143 930

6 20.8 694 741 691 27.6 937 954 920

8 17.2 660 762 640 23 915 942 855

10 15.1 689 730 683 17.1 680 748 660

12 12.2 591 699 626 14.2 603 745 670
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A and D as shown in Figure 5 and remotely between the grips using
the testing machine displacement recorder. The local displacement
measurements between A and D were used to derive the compliance
for different crack lengths and crack positions. An example of the load
displacement measured locally with an extensometer and globally
using the machine displacement for a precrack length of 8mm are
shown in Figure 6. It is clear that the appropriate displacement
measurement needed for the analysis is the local one and not the
global displacement, which is not representative of the deformation
local to the bondline interface.

Figure 7 compares the experimental DLJ compliance measure-
ments and the results from FE calculations. The FE compliance is
shown to be slightly different between specimens with cracks at side
A and D. The difference is larger for longer crack length. Essentially
where the tensile peel stresses are higher at position D, the

FIGURE 6 Local and global load-displacement curve of an epoxy-bonded DLJ
specimen tested under monotonic load at a crack length of 8mm for a crack at
the left-hand side A (see Table 2).
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compliance tends to be larger when compared with cracks at position
A. The agreement is reasonable, with the experimental results falling
slightly lower than the FE calculations, hence making the FE com-
pliance a conservative estimate. Using the FE results, the compliance
of the DLJ can be described as a function of crack length by

C ¼ d=p ¼ f ðaÞ ð37Þ
where p ¼ P=2w and

f ðaÞ ¼ 1:24� 10�8a3 þ 1:4� 10�7a2 þ 9:15� 10�7aþ 5� 10�5 ðSide AÞ;
f ðaÞ ¼ 2:15� 10�8a3 þ 5:1� 10�8a2 þ 2:2� 10�6aþ 5� 10�5 ðSide DÞ:

ð38Þ
In these, the dimension of p is in N=mm and d is in mm. The experi-
mental fracture energy was then calculated from the measured failure
load per unit width per arm, pf ¼ Pf =2w, by

G ¼
p2
f

2

dC

da
ð39Þ

FIGURE 7 Comparison of DLJ compliance measured from experiments and
obtained from FEA.
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where

dC

da
¼ 3:72� 10�8a2 þ 2:8� 10�7aþ 9:15� 10�7 ðSide AÞ;

dC

da
¼ 6:45� 10�8a2 þ 1:02� 10�7aþ 2:2� 10�6 ðSide DÞ:

ð40Þ

The results of experimental failure load and fracture energy are pre-
sented in Table 2. The locus of failure was found to be a mixture of
interfacial (visually) and cohesive fracture for all joints.

COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

Several examples were solved to show the accuracy of the analytical
solution in comparison with the numerical analysis. Both stress distri-
butions and fracture parameters were obtained. Comparisons with
experimental data were made in some cases. The importance of shear-
and peel-stress components can be judged from the results and deci-
sions can be made whether to use the general solution or the simplified
one. The shear and peel stresses were normalized by multiplying them
by the factor ðt2=Fx

2Þ. A sample of a contour plot of shear- and peel-
stress distribution in DLJ from FEA is shown in Figure 8 for crack
positions A and D.

In the first example, a DLJ without any crack was considered. The
joint was under tensile loading of Fx

2 ¼ 2Fx
1 ¼ 600N=mm. Figure 9

compares the shear-stress distribution along the interface of adhesive
and adherend 2 obtained from numerical and analytical solutions.
Both general and simplified solutions are shown. The analytical sol-
ution shows good agreement with finite element results and the
general solution generally gives a more accurate representation. Some
discrepancies can be seen at the overlap ends. In fact, these spots
act like singular points and the finite element method tries to model
the zero stress state at traction-free end surfaces. The difference
between stress distribution from analytical and FEA solutions along
the overlap and away from its ends is negligible. In Figure 10 peel-
stress distribution resulting from simplified analytical and FEA solu-
tions along the interface CD in an uncracked DLJ are compared.
Again, the analytical solution agrees quite well with the FEA results.

Figure 11 shows the effect of the crack length on the shear-stress
distribution obtained from the general solution and the FEA. Two dif-
ferent crack lengths of 2mm and 5mm at position A were considered
on one side of the bondline (as shown in Figures 1 and 5) and the stress
distribution was plotted along the cracked side of the adhesive.
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FIGURE 8 Distribution of peel stress and shear stress along the bonded part
of DLJ at a crack length of 4mm with the crack placed either at side D or at
side A.
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In Figure 12, a similar comparison between peel stress computed from
the simplified solution and the FEA for the same crack lengths is
made. In all cases, the agreement between analytical solution and
FEA was generally acceptable except in the vicinity of the crack tip.

COMPARISON WITH EXPERIMENTAL RESULTS

The peel-stress contours at the crack tips in Figures 8c and d suggest
that the specimen is subjected to mixed-mode loading, although Mode
I seems to be dominant. It is also observed that the tensile peel stres-
ses at position D cause crack opening, while the compressive peel
stress at position A causes crack closure. Therefore, the fracture
energy depends on crack position.

For each experimental case shown in Table 2, the specific values of
the strain energy-release rate, Gf, from the experiments, FEA J inte-
grals, and the analytical calculations were derived and compared.
Figure 13 compares the strain energy-release rates with the fracture
computed for each test case versus the normalized crack length, a=L.
The experimental, analytical, and numerical solutions for Gf show a
very good overall agreement. The increased discrepancy at the shorter

FIGURE 9 Distribution of shear stress along the interface CD between
adhesive and adherend 2 (uncracked DLJ).
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crack length is due to the increased experimental scatter. Errors
resulting from the exact fabrication of the specimen, such as in con-
trolling the initial crack size and the thickness of the adhesive layer
contribute to the scatter. However, it is shown in Figure 13 that the
best-fit mean value of Gf is relatively constant with respect to crack
length except at the very long crack lengths. It is also evident that
the mean experimental strain energy-release rate for specimens at
position D is lower by about 20% when compared with specimens with
cracks at position A.

CONCLUSIONS

A general analytical solution has been presented to estimate the shear
and peel stresses along the bonded layer of double-lap joints and to cal-
culate the fracture energy of the adhesive. By assuming that the
transverse deflection on the shear distribution is negligible, the gen-
eral solution was further simplified. It was shown that the simplified
solution is sufficient for deriving the peel stress but to obtain more
precise results for the shear stress, the general solution gives a more
accurate answer. Using the stress field from the analytical solution,

FIGURE 10 Distribution of peel stress along the interface CD between
adhesive and adherend 2 (uncracked DLJ).
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FIGURE 11 Shear-stress profile at two different crack lengths at point C
along the bondline of adherend 2.

FIGURE 12 Peel-stress profile at two different crack lengths at point C along
the bondline of adherend 1.
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the adhesive fracture energy was calculated in two ways. This was
done either by using the crack closure integral (CCI) or by means of
the J-integral approach. Furthermore, the calculated fracture energy
from the analytical solutions was verified by the J integral obtained
from finite element analysis. The tests carried out contained cracks
at different ends of the DLJ. The loading was determined to be
mixed-mode at the crack tip for this particular geometry. In addition,
the experimentally measured local compliance (displacement=load) of
the adhesive compared well with that derived from the FE and was
found to be slightly lower than the predicted FE values. The calculated
values of Gf at failure, from the limited number of tests performed,
compared reasonably well with the analytical and numerical deriva-
tions for G. The fracture energy results for the adhesive used in the
DLJ specimens showed relative independence with respect to crack
length. However, the fracture energy for the crack starter in the
position where the peel stress was found to be tensile was approxi-
mately 20% lower than for the tests where the crack was positioned
at the side, where the peel stress was shown to be compressive.

FIGURE 13 Comparisonsof energy-release rateat failure,Gf,withcrack length
using experimental, numerical, and analytical solutions to derive G. Solid
markers are for a crack at side A, and open markers are for a crack at side D.
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APPENDIX A

The force and moment equilibrium equations for a differential
element, dx, within the joint can be written as follows (see Figure 2):

dQ1

dx
¼ �ry

dF1

dx
¼ �sxy

dM1

dx
¼ Q1 �

t1
2
sxy;

8>>>>>><
>>>>>>:

ðA1Þ
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dQ2

dx
¼ 0

dF2

dx
¼ 2sxy

dM2

dx
¼ Q2

8>>>>>><
>>>>>>:

ðA2Þ

where subscripts 1 and 2 stand for the outer and the inner adherends,
respectively. The equations were derived for a unit width in the z
direction.

APPENDIX B

The right-hand sides of Equations (8) and (9) were evaluated at either
ends of the bonded region to calculate the constants of Equation (23) as

EfL
2

2taD2k2r
ðM2 � fM1Þ ¼

T1 at n ¼ 0
T2 at n ¼ 1;

�
ðB1Þ

Q2 � fQ1 þ
ft1
2

sxy

� �
L3

2k3r
¼ T3 at n ¼ 0

T4 at n ¼ 1;

�
ðB2Þ

then the second and third differentiations of Equation (23) were also
evaluated at these geometrical points to develop a relation between
the b1–b4 coefficients and Equations (B1) and (B2). The solution of this
system of equations would be as follows:

b1 ¼ T1=s4;

b2 ¼ fT1ðs41 þ 4s21s2s3 � 1Þ þ 2T2½s1ðs3 � s2Þ � s31ðs3 þ s2Þ�
þ 4T3s

2
1s

2
2 þ 2T4s2ðs31 � s1Þg=s4;

b3 ¼ f�T1½ðs21 � 1Þ2 þ 4s21s
2
2� þ 4T2s2ðs31 � s1Þ

þ T3ð�s41 þ 4s21s2s3 þ 1Þ
þ 2T4½s31ðs3 � s2Þ � s1ðs3 þ s2Þ�g=s4;

b4 ¼ fT1ðs41 þ 4s21s2s3 � 1Þ þ 2T2½s1ðs3 � s2Þ � s31ðs3 þ s2Þ�
þ T3ðs41 � 2s21 þ 1Þ þ 2T4s2ðs31 � s1Þg=s4;

ðB3Þ

in which

s1 ¼ expðkrÞ; s2 ¼ sinðkrÞ; s3 ¼ cosðkrÞ ðB4Þ

s4 ¼ 4s21s
2
2 � ðs21 � 1Þ2: ðB5Þ
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